3.28 \(\int \frac{\cot ^5(d+e x)}{(a+b \cot ^2(d+e x)+c \cot ^4(d+e x))^{3/2}} \, dx\)

Optimal. Leaf size=160 \[ \frac{\tanh ^{-1}\left (\frac{2 a+(b-2 c) \cot ^2(d+e x)-b}{2 \sqrt{a-b+c} \sqrt{a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{2 e (a-b+c)^{3/2}}-\frac{(b (a-b)+2 a c) \cot ^2(d+e x)+a (2 a-b)}{e (a-b+c) \left (b^2-4 a c\right ) \sqrt{a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}} \]

[Out]

ArcTanh[(2*a - b + (b - 2*c)*Cot[d + e*x]^2)/(2*Sqrt[a - b + c]*Sqrt[a + b*Cot[d + e*x]^2 + c*Cot[d + e*x]^4])
]/(2*(a - b + c)^(3/2)*e) - (a*(2*a - b) + ((a - b)*b + 2*a*c)*Cot[d + e*x]^2)/((a - b + c)*(b^2 - 4*a*c)*e*Sq
rt[a + b*Cot[d + e*x]^2 + c*Cot[d + e*x]^4])

________________________________________________________________________________________

Rubi [A]  time = 0.394066, antiderivative size = 160, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.171, Rules used = {3701, 1251, 1646, 12, 724, 206} \[ \frac{\tanh ^{-1}\left (\frac{2 a+(b-2 c) \cot ^2(d+e x)-b}{2 \sqrt{a-b+c} \sqrt{a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{2 e (a-b+c)^{3/2}}-\frac{(b (a-b)+2 a c) \cot ^2(d+e x)+a (2 a-b)}{e (a-b+c) \left (b^2-4 a c\right ) \sqrt{a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}} \]

Antiderivative was successfully verified.

[In]

Int[Cot[d + e*x]^5/(a + b*Cot[d + e*x]^2 + c*Cot[d + e*x]^4)^(3/2),x]

[Out]

ArcTanh[(2*a - b + (b - 2*c)*Cot[d + e*x]^2)/(2*Sqrt[a - b + c]*Sqrt[a + b*Cot[d + e*x]^2 + c*Cot[d + e*x]^4])
]/(2*(a - b + c)^(3/2)*e) - (a*(2*a - b) + ((a - b)*b + 2*a*c)*Cot[d + e*x]^2)/((a - b + c)*(b^2 - 4*a*c)*e*Sq
rt[a + b*Cot[d + e*x]^2 + c*Cot[d + e*x]^4])

Rule 3701

Int[cot[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*(cot[(d_.) + (e_.)*(x_)]*(f_.))^(n_.) + (c_.)*(cot[(d_.) + (e
_.)*(x_)]*(f_.))^(n2_.))^(p_), x_Symbol] :> -Dist[f/e, Subst[Int[((x/f)^m*(a + b*x^n + c*x^(2*n))^p)/(f^2 + x^
2), x], x, f*Cot[d + e*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0]

Rule 1251

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2,
Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] &&
 IntegerQ[(m - 1)/2]

Rule 1646

Int[(Pq_)*((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = Polynomi
alQuotient[(d + e*x)^m*Pq, a + b*x + c*x^2, x], f = Coeff[PolynomialRemainder[(d + e*x)^m*Pq, a + b*x + c*x^2,
 x], x, 0], g = Coeff[PolynomialRemainder[(d + e*x)^m*Pq, a + b*x + c*x^2, x], x, 1]}, Simp[((b*f - 2*a*g + (2
*c*f - b*g)*x)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)), x] + Dist[1/((p + 1)*(b^2 - 4*a*c)), Int[(d
 + e*x)^m*(a + b*x + c*x^2)^(p + 1)*ExpandToSum[((p + 1)*(b^2 - 4*a*c)*Q)/(d + e*x)^m - ((2*p + 3)*(2*c*f - b*
g))/(d + e*x)^m, x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && PolyQ[Pq, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2
- b*d*e + a*e^2, 0] && LtQ[p, -1] && ILtQ[m, 0]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\cot ^5(d+e x)}{\left (a+b \cot ^2(d+e x)+c \cot ^4(d+e x)\right )^{3/2}} \, dx &=-\frac{\operatorname{Subst}\left (\int \frac{x^5}{\left (1+x^2\right ) \left (a+b x^2+c x^4\right )^{3/2}} \, dx,x,\cot (d+e x)\right )}{e}\\ &=-\frac{\operatorname{Subst}\left (\int \frac{x^2}{(1+x) \left (a+b x+c x^2\right )^{3/2}} \, dx,x,\cot ^2(d+e x)\right )}{2 e}\\ &=-\frac{a (2 a-b)+((a-b) b+2 a c) \cot ^2(d+e x)}{(a-b+c) \left (b^2-4 a c\right ) e \sqrt{a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}+\frac{\operatorname{Subst}\left (\int -\frac{b^2-4 a c}{2 (a-b+c) (1+x) \sqrt{a+b x+c x^2}} \, dx,x,\cot ^2(d+e x)\right )}{\left (b^2-4 a c\right ) e}\\ &=-\frac{a (2 a-b)+((a-b) b+2 a c) \cot ^2(d+e x)}{(a-b+c) \left (b^2-4 a c\right ) e \sqrt{a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}-\frac{\operatorname{Subst}\left (\int \frac{1}{(1+x) \sqrt{a+b x+c x^2}} \, dx,x,\cot ^2(d+e x)\right )}{2 (a-b+c) e}\\ &=-\frac{a (2 a-b)+((a-b) b+2 a c) \cot ^2(d+e x)}{(a-b+c) \left (b^2-4 a c\right ) e \sqrt{a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}+\frac{\operatorname{Subst}\left (\int \frac{1}{4 a-4 b+4 c-x^2} \, dx,x,\frac{2 a-b-(-b+2 c) \cot ^2(d+e x)}{\sqrt{a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{(a-b+c) e}\\ &=\frac{\tanh ^{-1}\left (\frac{2 a-b+(b-2 c) \cot ^2(d+e x)}{2 \sqrt{a-b+c} \sqrt{a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{2 (a-b+c)^{3/2} e}-\frac{a (2 a-b)+((a-b) b+2 a c) \cot ^2(d+e x)}{(a-b+c) \left (b^2-4 a c\right ) e \sqrt{a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\\ \end{align*}

Mathematica [C]  time = 30.7386, size = 25130, normalized size = 157.06 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Cot[d + e*x]^5/(a + b*Cot[d + e*x]^2 + c*Cot[d + e*x]^4)^(3/2),x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [B]  time = 0.078, size = 599, normalized size = 3.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(e*x+d)^5/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(3/2),x)

[Out]

1/e/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(1/2)/(4*a*c-b^2)*b*cot(e*x+d)^2+2/e/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(
1/2)/(4*a*c-b^2)*a+2/e/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(1/2)/(4*a*c-b^2)*c*cot(e*x+d)^2+1/e/(a+b*cot(e*x+d)^
2+c*cot(e*x+d)^4)^(1/2)/(4*a*c-b^2)*b-2/e*c/((-4*a*c+b^2)^(1/2)+b-2*c)/(-4*a*c+b^2)/(cot(e*x+d)^2+1/2/c*(-4*a*
c+b^2)^(1/2)+1/2*b/c)*((cot(e*x+d)^2+1/2*((-4*a*c+b^2)^(1/2)+b)/c)^2*c-(-4*a*c+b^2)^(1/2)*(cot(e*x+d)^2+1/2*((
-4*a*c+b^2)^(1/2)+b)/c))^(1/2)-2/e*c/((-4*a*c+b^2)^(1/2)-b+2*c)/((-4*a*c+b^2)^(1/2)+b-2*c)/(a-b+c)^(1/2)*ln((2
*a-2*b+2*c+(b-2*c)*(cot(e*x+d)^2+1)+2*(a-b+c)^(1/2)*((cot(e*x+d)^2+1)^2*c+(b-2*c)*(cot(e*x+d)^2+1)+a-b+c)^(1/2
))/(cot(e*x+d)^2+1))+2/e*c/((-4*a*c+b^2)^(1/2)-b+2*c)/(-4*a*c+b^2)/(cot(e*x+d)^2-1/2/c*(-4*a*c+b^2)^(1/2)+1/2*
b/c)*((cot(e*x+d)^2-1/2*(-b+(-4*a*c+b^2)^(1/2))/c)^2*c+(-4*a*c+b^2)^(1/2)*(cot(e*x+d)^2-1/2*(-b+(-4*a*c+b^2)^(
1/2))/c))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cot \left (e x + d\right )^{5}}{{\left (c \cot \left (e x + d\right )^{4} + b \cot \left (e x + d\right )^{2} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(e*x+d)^5/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(3/2),x, algorithm="maxima")

[Out]

integrate(cot(e*x + d)^5/(c*cot(e*x + d)^4 + b*cot(e*x + d)^2 + a)^(3/2), x)

________________________________________________________________________________________

Fricas [B]  time = 5.3831, size = 3829, normalized size = 23.93 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(e*x+d)^5/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(3/2),x, algorithm="fricas")

[Out]

[1/4*((a*b^2 + b^3 - 4*a*c^2 + (a*b^2 - b^3 - 4*a*c^2 - (4*a^2 - 4*a*b - b^2)*c)*cos(2*e*x + 2*d)^2 - (4*a^2 +
 4*a*b - b^2)*c - 2*(a*b^2 + 4*a*c^2 - (4*a^2 + b^2)*c)*cos(2*e*x + 2*d))*sqrt(a - b + c)*log(2*(a^2 - 2*a*b +
 b^2 + 2*(a - b)*c + c^2)*cos(2*e*x + 2*d)^2 + 2*a^2 - b^2 + 2*c^2 + 2*((a - b + c)*cos(2*e*x + 2*d)^2 - (2*a
- b)*cos(2*e*x + 2*d) + a - c)*sqrt(a - b + c)*sqrt(((a - b + c)*cos(2*e*x + 2*d)^2 - 2*(a - c)*cos(2*e*x + 2*
d) + a + b + c)/(cos(2*e*x + 2*d)^2 - 2*cos(2*e*x + 2*d) + 1)) - 4*(a^2 - a*b + b*c - c^2)*cos(2*e*x + 2*d)) -
 4*(2*a^3 - 2*a^2*b - a*b^2 + b^3 + 2*a*c^2 + (2*a^3 - 4*a^2*b + 3*a*b^2 - b^3 + b^2*c - 2*a*c^2)*cos(2*e*x +
2*d)^2 + (4*a^2 - 2*a*b - b^2)*c - 2*(2*a^3 - 3*a^2*b + a*b^2 + (2*a^2 - a*b)*c)*cos(2*e*x + 2*d))*sqrt(((a -
b + c)*cos(2*e*x + 2*d)^2 - 2*(a - c)*cos(2*e*x + 2*d) + a + b + c)/(cos(2*e*x + 2*d)^2 - 2*cos(2*e*x + 2*d) +
 1)))/((a^3*b^2 - 3*a^2*b^3 + 3*a*b^4 - b^5 - 4*a*c^4 - (12*a^2 - 12*a*b - b^2)*c^3 - 3*(4*a^3 - 8*a^2*b + 3*a
*b^2 + b^3)*c^2 - (4*a^4 - 12*a^3*b + 9*a^2*b^2 + 2*a*b^3 - 3*b^4)*c)*e*cos(2*e*x + 2*d)^2 - 2*(a^3*b^2 - 2*a^
2*b^3 + a*b^4 + 4*a*c^4 + (4*a^2 - 8*a*b - b^2)*c^3 - (4*a^3 - 3*a*b^2 - 2*b^3)*c^2 - (4*a^4 - 8*a^3*b + 3*a^2
*b^2 + b^4)*c)*e*cos(2*e*x + 2*d) + (a^3*b^2 - a^2*b^3 - a*b^4 + b^5 - 4*a*c^4 - (12*a^2 - 4*a*b - b^2)*c^3 -
(12*a^3 - 8*a^2*b - 7*a*b^2 + b^3)*c^2 - (4*a^4 - 4*a^3*b - 7*a^2*b^2 + 6*a*b^3 + b^4)*c)*e), -1/2*((a*b^2 + b
^3 - 4*a*c^2 + (a*b^2 - b^3 - 4*a*c^2 - (4*a^2 - 4*a*b - b^2)*c)*cos(2*e*x + 2*d)^2 - (4*a^2 + 4*a*b - b^2)*c
- 2*(a*b^2 + 4*a*c^2 - (4*a^2 + b^2)*c)*cos(2*e*x + 2*d))*sqrt(-a + b - c)*arctan(((a - b + c)*cos(2*e*x + 2*d
)^2 - (2*a - b)*cos(2*e*x + 2*d) + a - c)*sqrt(-a + b - c)*sqrt(((a - b + c)*cos(2*e*x + 2*d)^2 - 2*(a - c)*co
s(2*e*x + 2*d) + a + b + c)/(cos(2*e*x + 2*d)^2 - 2*cos(2*e*x + 2*d) + 1))/((a^2 - 2*a*b + b^2 + 2*(a - b)*c +
 c^2)*cos(2*e*x + 2*d)^2 + a^2 - b^2 + 2*a*c + c^2 - 2*(a^2 - a*b + b*c - c^2)*cos(2*e*x + 2*d))) + 2*(2*a^3 -
 2*a^2*b - a*b^2 + b^3 + 2*a*c^2 + (2*a^3 - 4*a^2*b + 3*a*b^2 - b^3 + b^2*c - 2*a*c^2)*cos(2*e*x + 2*d)^2 + (4
*a^2 - 2*a*b - b^2)*c - 2*(2*a^3 - 3*a^2*b + a*b^2 + (2*a^2 - a*b)*c)*cos(2*e*x + 2*d))*sqrt(((a - b + c)*cos(
2*e*x + 2*d)^2 - 2*(a - c)*cos(2*e*x + 2*d) + a + b + c)/(cos(2*e*x + 2*d)^2 - 2*cos(2*e*x + 2*d) + 1)))/((a^3
*b^2 - 3*a^2*b^3 + 3*a*b^4 - b^5 - 4*a*c^4 - (12*a^2 - 12*a*b - b^2)*c^3 - 3*(4*a^3 - 8*a^2*b + 3*a*b^2 + b^3)
*c^2 - (4*a^4 - 12*a^3*b + 9*a^2*b^2 + 2*a*b^3 - 3*b^4)*c)*e*cos(2*e*x + 2*d)^2 - 2*(a^3*b^2 - 2*a^2*b^3 + a*b
^4 + 4*a*c^4 + (4*a^2 - 8*a*b - b^2)*c^3 - (4*a^3 - 3*a*b^2 - 2*b^3)*c^2 - (4*a^4 - 8*a^3*b + 3*a^2*b^2 + b^4)
*c)*e*cos(2*e*x + 2*d) + (a^3*b^2 - a^2*b^3 - a*b^4 + b^5 - 4*a*c^4 - (12*a^2 - 4*a*b - b^2)*c^3 - (12*a^3 - 8
*a^2*b - 7*a*b^2 + b^3)*c^2 - (4*a^4 - 4*a^3*b - 7*a^2*b^2 + 6*a*b^3 + b^4)*c)*e)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(e*x+d)**5/(a+b*cot(e*x+d)**2+c*cot(e*x+d)**4)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(e*x+d)^5/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(3/2),x, algorithm="giac")

[Out]

Timed out